
Bitcoin Transaction Malleability

Sidi Mohammed Boughalem (shinokiz@gmail.com)

10. July 2019

The Bitcoin network is a peer-to-peer system that has participants from
all over the Internet. The Bitcoin protocol requires participating nodes to
retain and update all transaction records; this ensures that all Bitcoin ac-
tivities are accessible from a consistent transaction history database. Nev-
ertheless, The Bitcoin global cryptocurrency system has been the subject
of several criminal cases that exploited several flaws. We investigate in this
paper one of them, known as Transaction Malleability. We then provide the
analysis of the famous Mt.Gox incident following Decker and Wattenhofer
[1].

1 Transaction malleability
Bitcoin payments are encoded as transactions that eventually become part of the
blockchain. Each user can create a number of addresses that can be used to send,
receive and prove ownership of bitcoins. A bitcoin address is the hash of a public key,
i.e., a 256-bits integer that comes from an ECDSA key pair (r, s) (where the public
key is calculated from a private key).

Definition 1.1 (Transaction). a Bitcoin transaction is a signed data structure that
consists of one or more inputs (specifies which bitcoins will be transferred) and an
ordered list of one or more outputs (specifies the address that should be credited with
the bitcoins being transferred).

Formally, an output is a tuple comprising the value that is to be transferred and a
locking script, while an input includes the hash of a previous transaction, an index,
and an unlocking script. The hash and index form a reference that uniquely identifies
the output to be claimed and the unlocking script proves that the user creating the
transaction is indeed the owner of the bitcoins being claimed.

Seminar
”
Mathematical Literacy: Cryptocurrencies “, SS 2019, Universität Regensburg

1

1 Transaction malleability 2

Example 1.2. An example of a bitcoin transaction found in the blockchain ([10]):

Input:
Previous tx: f5d8ee39a430901c91a5917b9f2dc19d6d1a0e9cea205b009ca73dd04470b9a6
Index: 0
scriptSig: 304502206e21798a42fae0e854281abd38bacd1aeed3ee3738d9e1446618c4571d
1090db022100e2ac980643b0b82c0e88ffdfec6b64e3e6ba35e7ba5fdd7d5d6cc8d25c6b241501

Output:
Value: 5000000000
scriptPubKey:
DUP HASH160 404371705fa9bd789a2fcd52d2c580b65d35549d EQUALVERIFY CHECKSIG

Every transaction is serialized, i.e. it is translated into a format that on the one
hand, it can be more easily stored and transmitted across a network and on the other
hand, it can be referenced as follow:

Definition 1.3 (Transaction ID). a transaction identifier (Txid) is a unique 32-byte
alphanumerical string of data that is used to reference a bitcoin transaction. The
transaction identifier is formed by hashing transaction data through the SHA-256 hash
function twice. That is:

Tx id = SHA-256(SHA-256(Transaction data))

Here, the transaction data consist of

1. Transaction Hash: Reference to the transaction containing the UTXO being
spent.

2. Output Index: The index number of the UTXO being spent.

3. Unlocking Script: Script that satisfies conditions of the locking script.

4. Unlocking Script Size: Size of the unlocking script in bytes.

5. Sequence Number.

Example 1.4. Here is an example of a Txid [7]:

adae0270457bad95152c5ae7771b50fae06afa01edeefca4201689e7c99e0b19

In other words, one can see the Txid as some sort of “convenience” for purely human
interaction; indeed, they affect in no way the way the block chain works. If one
acquires some goods in some e-commerce website using Bitcoin as payment, then in
case of any possible reason the website might lose the transaction (software issues for
an example), they can manually check in blockchain whether or not your transaction
has been validated, providing your Txid. What is relevant however in Definition 1.3,
is that the Txid depends on the unlocking script (3.).

https://www.blockchain.com/btc/tx/adae0270457bad95152c5ae7771b50fae06afa01edeefca4201689e7c99e0b19

1 Transaction malleability 3

Definition 1.5 (Bitcoin Script). scriptPubKey is a locking script placed on the
output of a Bitcoin transaction that requires certain conditions to be met in order for
a recipient to spend his/her bitcoins; scriptPubKey is also known as PubKey Script
outside of the Bitcoin code. Conversely, scriptSig is the unlocking script that satisfies
the conditions placed on the output by the scriptPubKey, and is what allows it to be
spent; outside of code, scriptSig is also known as Signature scripts.

Both scriptPubKey and scriptSig are written in Script, the programming language
used for constructing bitcoin transactions. Script is a simple and stack-based. It pro-
cess from left to right and is intentionally, not Turing-complete (in particular, it has
noo loops). The lack of functionalities makes Script more secure for Bitcoin transac-
tions as it can only perform a limited number of operations.

The vast majority of transactions use a standard script that set up a claiming condi-
tion requiring the claiming script to provide a public key matching the address and a
valid signature of the current transaction matching the public key, here is an exam-
ple of the standard locking script and unlocking script as used by simple transactions
transferring bitcoins to an address backed by a single public key: [5]

Unlocking script Locking script

(scriptSig) (scriptPubKey)︷ ︸︸ ︷ ︷ ︸︸ ︷
〈sig〉 〈pubKey〉 DUP HASH160 〈pubKeyHash〉 EQUALVERIFY CHECKSIG︸ ︷︷ ︸ ︸ ︷︷ ︸
Unlock script is
provided by the
user to fulfill the

claiming condition.

Lock script is found in a transaction output and is the claiming
condition that must be fulfilled to spend the output.

As one can see, the unlocking script, scriptSig, contains a sig (digital signature)
and a pubKey (public key) which must be provided in order for the locking script
to be satisfied. Conversely, the locking script, scriptPubKey, contains a pubKeyHash
which corresponds as seen before to a Bitcoin address. The process works such that,
the scriptSig and scriptPubKey are combined and executed in sequence, with the
unlocking script being executed first. For example, Alice sends Bob 1 BTC. When
Bob decides to spend the that 1 BTC that he received from Alice, he must first unlock
the outputs, which then become locked when the recipient receives his 1 BTC.

1 Transaction malleability 4

Now we take a deeper look at how exactly these script work. Figure 1 shows the
script code of scriptSig, and Figure 2 the script code of scriptPubKey.

OP_PUSHDATA∗
<sig>
OP_PUSHDATA∗
<pubKey>

Figure 1: scriptSig

OP_DUP
OP_HASH160
OP_PUSHDATA∗
<pubKeyHash>
OP_EQUALVERIFY
OP_CHECKSIG

Figure 2: scriptPubKey

Here is how the magic happens: Suppose we have a transaction Tn that has the output
of a previous transaction Tn−1. scriptSig of Tn pushes the signature and the public
key on the stack. The scriptPubKey of Tn−1 duplicates the public key (OP_DUP),
hash it (OP_HASH160) this 20 byte derivative of the public key is also encoded in the
address then pushes it on the stack. The two top elements of the stack (i.e. the signa-
ture and the hashed public key) are then tested for equality (OP_EQUALVERIFY).
If the hash of the public key and the expected hash match, the script continues, oth-
erwise the execution is aborted. Finally, these last two verify that scriptSig signs Tn

(OP_CHECKSIG). Figure 3 shows a list of opcodes used in both figure above.

Command Input Output Description
OP_DUP x xx Duplicates the top stack item.
OP_HASH160 in hash The input is hashed twice: first with SHA-256

and then with RIPEMD-160.
OP_EQUALVERIFY x1x2 ∅ Returns 1 if the inputs are exactly equal, 0

otherwise, then marks transaction as invalid if
top stack value is 0. The top stack value is
removed.

OP_CHECKSIG sig pubKey True/False Returns 1 if the signature used is a valid
signature for the hash and public key, 0
otherwise.

Figure 3: List of OP codes used in scriptSig and scriptPubKey, [8]

When a transaction is propagating in the network, the nodes that encode it can mutate
scriptSig without altering the signature: in the following scripts, the encoded signature
is valid in both cases but the hash identifying the transaction is different. (One can
execute the following scripts in [9], with the help of Figure 4.)

1 Transaction malleability 5

OP_PUSHDATA∗
<sig>
OP_NOP
OP_PUSHDATA∗
<pubKey>

Mutating scriptSig with
the operation OP_NOP

OP_PUSHDATA∗
<sig>
OP_DUP
OP_DROP
OP_PUSHDATA∗
<pubKey>

Mutating scriptSig with the op-
erations OP_DUP/OP_DROP

Command Input Output Description
OP_NOP Nothing Nothing Does nothing.
OP_DUP x xx Duplicates the top stack item.
OP_DROP x Nothing Removes the top stack item.

Figure 4: List of OP codes used in the mutations of scriptSig, [8]

Thus, the transaction will have the same effect, but the hash identifying the trans-
action will change. To observe how this is possible, we will closely investigate the
OP_PUSHDATA operations (Figure 5). OP_PUSHDATA basically specifies a num-
ber of bytes to be pushed as a string on the stack. The simplest one OP_0 encodes
the length of the string in a single byte (with value between 0x00 and 0x4b).

Command Input Output Description
OP_0 Nothing ∅ An empty array of bytes is pushed onto the

stack.
OP_PUSHDATA1 (special) data The next byte contains the number of bytes to

be pushed onto the stack.
OP_PUSHDATA2 (special) data The next two bytes contain the number of bytes

to be pushed onto the stack in little endian
order.

OP_PUSHDATA4 (special) data The next four bytes contain the number of bytes
to be pushed onto the stack in little endian
order.

Figure 5: List of OP_PUSHDATA, [8]

1 Transaction malleability 6

Now if one replaces the (OP_0) that pushes the public key on the stack with
(OP_PUSHDATA2), the claiming script is changed from

0x52<sig>86<pubKey>

to

0x4D5200<sig>4D8600<pubKey>

If the unlocking script is changed, the serialized transaction data will be different,
therefore, the resulting Txid will also be different. These changes in the way pushes
are encoded1, along with the previous examples constitute a malleability source, which
makes the script vulnerable for external attacks.

Definition 1.6 (Transaction malleability). Transaction malleability is the process of
changing the unique identifier Txid of a transaction by first changing the digital sig-
nature used to create it.

Now let us illustrate how a transaction malleability attack occur. Suppose our
dearest Alice creates a bitcoin payment transaction, and sends it to her peers. As
mentioned before, nothing prevents Alice’s peers from mutating her transaction when
they propagate it, thus changing its Txid. Suppose that Chuck, one of Alice’s peers,
out of malicious intent wants to initiate a malleability attack on her. As the inputs,
outputs, and payment amount are all cryptographically signed, Chuck can not steal
money or make any semantic changes to the transaction. What Chuck does though, is
change the way Alice’s Txid is computed, then broadcast the transaction with a new
Txid to the rest of the network. Here it boils down to which transaction gets validated
first: the original transaction created by Alice and relayed by her good peers, or the
modified version created by the malicious Chuck.
Most Bitcoin clients have an option to show users the Txid after they send a trans-
action. As Bitcoin transactions take some time to actually be confirmed as part of
the Blockchain, the clients periodically check for the if the transaction has actually
made it to the Blockchain or not (by checking if the expected Txid has been added to
a new block). If a transaction malleability attack occurs, and the Txid changes, then
the transaction will eventually be added to the Blockchain, but under an unexpected
Txid. This can confuse client softwares that were looking for a particular Txid.

Remark 1.7. An attacker can only alter the digital signature of the unlocking script
prior to the confirmation of a block. After confirmation, the digital signature, and
therefore the transaction id, are immutable.

Let us illustrate all that by the following concrete example:

Example 1.8. Alice sends 1 BTC with Txid = A. Bob, being a part of Alice’s pairs,
modifies the transaction so the new Txid is = B. The transaction makes it to the
Blockchain under Txid B and gets successfully added to the Blockchain, which at the
same time invalidates the previous transaction under Txid A. In the meantime, Alice’s
1It is commonly known as Push operations in scriptSig of non-standard size type, see [2].

1 Transaction malleability 7

client software keeps checking for Txid A, but will never find it. Nevertheless, Alice’s
wallet software will debit 1 BTC from her account since the modified transaction was
confirmed, and still sent 1 BTC from her account. At this point, Alice’s software
has debited 1 BTC from her account but cannot confirm the transaction. Alice might
eventually give up and think the transaction failed for some reason, and she could
retry the transaction. If she does, she will send another 1 BTC to the same address.
In essence, Bob has tricked Alice into double paying.

We recall that Bitcoin uses Elliptic Curve Digital Signature Algorithm, or ECDSA
for short. Digital Signature Algorithm is a cryptographic algorithm that uses a pair
consisting of a public key and a private key. The private key is used to generate
a digital signature for a message, and such a signature can be verified by using the
signer’s corresponding public key. It is based on the finite fields Fq and Fp where p
and q are large prime numbers, such that q | (p− 1). ECDSA is a variant of DSA that
uses elliptic curves. For Bitcoin, the elliptic curve used is the well known secp256k1
that has the following associated group (Ell(Fp),⊕p) where

• E ll(Fp) := {(x, y) ∈ F2
p | y2 ≡ x3 + 7 mod p} ∪ {∞}

• p is a prime number of the order 2256 − 1

• ⊕p denotes the elliptic curve point addition.

Let G be a base point of the elliptic curves, of order n (n is some prime number
mod p). The DSA algorithm involves three operations:

(i) Key generation: produces a pair (Pv, Pb) where Pv is a random element in F×n
and

Pb = Pv ⊗p G = G⊕p · · · ⊕p︸ ︷︷ ︸
Pv times

G = (xP , yP) is a point in the elliptic curve.

(ii) Signing algorithm: Given a message M .

• Calculate m = hash256(M)

• Select a random k ∈ F×n
• Compute P = (xP , yP) = k ⊗p G

• Set r ≡ xP mod n

• Compute s =
m+ r × Pv

k
mod n

• Get the signature ϕ(m) = (r, s)

1 Transaction malleability 8

(iii) Verification algorithm: Given a signature ϕ, a (hashed) message m, and the
public key Pb of the signer.

• If Pb does not satisfy the elliptic curve equation, output False.

• If r /∈ F×n or s /∈ F×n output False.

• Compute u :=
m

s
mod n

• Compute v :=
r

s
mod n

• Compute Q = (xQ, yQ) = (u⊗p G)⊕p (v ⊗p G)

• If r ≡ xQ mod n output True, otherwise output False.

There are numerous sources of malleability in the unlocking script (scriptSig). A
Bitcoin Improvement Proposal (BIP) by Wuille [2] identifies some of them. We will
cite only two :

1. Non-DER encoded ECDSA signatures: In Bitcoin, the signature (r, s) is
not encoded as a concatenation rs, but rather following a DER2 in order to make
data compatible, regardless of language implementation. Thus it gives only one
way to represent (r, s) as an octet string. However, the language used OpenSSL
allows “padding”: Let r = 0x2c5 for example. Then the DER allows r to be
for example encoded as 0x002c5. To remedy this, BIP66 provides a strict set of
rules that does not allow padding, only if the MSB3 = 1.
For example : 0x83b1 would be encoded as 0x0083b1 and nothing else. For more
details see [3].

2. Inherent ECDSA signature malleability: Due to symmetry: if (r, s) is a
valid signature, then so is the complementary signature (r,−s) mod n. Given
a signature (r, s) it’s possible to calculate the complementary signature without
knowing the ECDSA private keys, in the following way:
Let ϕ(m) = (r, s) be an ECDSA signature, of a messageM and ϕ′(m) = (r, n−s)
its complementary signature. Let a ≡ (n− s)−1 mod n. One sees that

a ≡ (n− s)−1 mod n⇔ an− as ≡ 1 mod n⇔ −as ≡ 1 mod n

⇔ −s−1 ≡ a ≡ (n− s)−1 mod n

Thus, if one looks at the verification algorithm of the signature ϕ′, one sees that

• Compute u′ :=
m

−s
≡ −u mod n

• Compute v′ :=
r

−s
≡ −v mod n

• Compute (xQ′ , yQ′) = Q′ = −Q = (xQ,−yQ)

2DER stands for Distinguished Encoding Rules.
3MSB stands for Most Significant Bit

2 The MtGox Incident Timeline 9

Hence, as long as ϕ, r ≡ xQ = xQ′ mod n and so ϕ′ is valid as well.
As the complementary signature has a different hash, this will result in a new
Txid. This was fixed in October 2015 through the BIP062 enforcing a canoni-
cal signature representation: both signature values are calculated, but only the
signature with the smaller |s| is considered valid. For more details see [2].

Transaction malleability attacks have however been mitigated on the Bitcoin network
via the implementation of a soft fork protocol upgrade known as Segregated Wit-
ness, or SegWit [4]. It was successfully activated on the Bitcoin network on 21st July
2017. With this, the signature data in the unlocking script is moved and omitted
(Figure 6) when calculating the Txid of the transaction data. Hence, if an attacker
modifies the signature data, the Txid will remain exactly the same.
The next section will treat a famous example of how the transaction malleability

Figure 6: Transaction schema before and after SegWit [6]

exploit was used to steal bitcoins, which eventually resulted in the insolvency of the
cryptocurrency exchange MT.Gox.

2 The MtGox Incident Timeline
The former cryptocurrency exchange, Mt.Gox, was the largest Bitcoin exchange and
web wallet service provider in the world. On February 7, 2014, Mt.Gox reported
technical difficulties due to hacking attacks. On February 10, 2014, Mt.Gox issued a
press release claiming that it had lost more than 850, 000 BTC, of which 750, 000 BTC
were customer owned bitcoins that were managed by Mt.Gox. (At the time of the first
press release, bitcoins were trading at 827 US Dollars per bitcoin, resulting in a total
value of lost bitcoins of 620 million US Dollars) ([1]). We briefly describe the timeline
of this incident by reconstructing it from the press releases by Mt.Gox.

– February 7th 2014: Mt.Gox announces that it would suspend all Bitcoin with-
drawals, due to the fact that the associated transactions could not be confirmed.

3 Measurement and analysis 10

Mt.Gox made it still possible for users to continue trading their funds, by trans-
ferring them to some sort of virtual accounts owned by Mt.Gox. [11]

– February 10th 2014: Mt.Gox claims in a second press release that the prob-
lem with the withdrawal transactions has been identified and names transaction
malleability as the “sole” cause. [12]

– February 17th 2014 - February 20th 2014: Mt.Gox announces in two press re-
leases that the withdrawals would resume shortly and that a “solution had been
found”.

– February 23rd 2014: The website of Mt.Gox returned only a blank page, without
any further explanation, resulting in a trading halt and the complete disappear-
ance of Mt.Gox.

– February 28th 2014 : Mt.Gox announces during a press conference that it would
be filing for bankruptcy in Japan and in the USA. [13]

Let us illustrate how the malleability attack in this case happens. Following example
1.8, Alice deposits 1 BTC into an account on an exchange. Later, Alice tries to
withdraw her 1 BTC off the exchange, back to her private wallet. If Alice controls
nodes that peer with the exchange, she might be able to change the Txid for her
withdrawal using transaction malleability. The 1 BTC she withdrew will go into her
private wallet under a new Txid. If the exchange is naive, Alice might be able to trick
it into thinking that it never sent her the said withdrawal and requests to withdraw
her 1 BTC again. By doing this repeatedly, Alice could potentially withdraw a large
amount of Bitcoin before the exchange realises.

3 Measurement and analysis
Malleability attacks, like every double spending attack, may only be detected while
participating in the network: “As soon as one of the two conflicting transactions is
considered to be confirmed, the nodes will drop all other conflicting transactions,
losing all information about the said attack” ([1]). Decker and Wattenhofer created in
January 2013 specialised nodes that would trace and dump all transactions and blocks
from the Bitcoin network. The nodes would keep a cache of connection database up to
1,000 connections. On average, the nodes connected to 992 peers, which at that time
represented approximately 20% of the reachable nodes.
Since the probability of detecting a double spending attack quickly converges to 1 as
the number of sampled peers increases ([14]), one may assume that the transactions
collected during the measurements faithfully reflect the double spending attacks in the
network during the same period.

Definition 3.1. Two (or more) transactions are said to conflict if they are associated
to the same output.

3 Measurement and analysis 11

Given a set of transactions, one way to detect and group all transaction that have
been subject to malleability attack would be to remove (scriptSig) from the transac-
tions.

Definition 3.2. – a conflict set is the set of transactions that do not contain
scriptSig anymore and produce the same key.

– a conflict set value is the amount of bitcoins transferred by any transaction in
the conflict set.

Two transactions in a conflict set have the same output, and thus transfer the same
amount of bitcoin. This makes it possible to obtain the amount of all bitcoins involved
in malleability attacks by summing up the value of all conflict sets.

Recall that a malleability attack is possible if:

(a) The modified transaction is confirmed and is successfully added to the Blockchain.

(b) The system issuing the transaction rely solely on the Txid to track and verify its
confirmation.

Since (b) depends on the implementation of the issuing system, one only considers
that a malleability attack is successful if condition (a) holds.

Finally, assume that the conflict sets were a direct result of a targeted attack by an
attacker against a service. (In fact, there might be other causes for this kind of conflict
due to faulty parameters.

3.1 Measurement
All the data provided (numbers, graphics and ratios) are taken from ([1]).

Confirmed attacks: 29, 139 conflict sets contained a transaction that would later be
confirmed by a bloc, out of 35, 202 identified conflict set. The remaining 6, 063
transactions were either invalid because they claimed non-existing outputs, had
incorrect signatures, or they were part of a further double spending.

Bitcoin value: 302, 700 bitcoins were involved in malleability attacks, obtained by
summing the value of the collected conflict sets.

Nature of the attacks: 98% of the attacks (28, 595 out of the 29, 139) were of type
Push operations in scriptSig of non-standard size as described in sec-
tion ?? (replacing the single byte OP_0 with OP_PUSHDATA2). For the re-
maining 544 conflict sets, all transactions had genuine signatures with the correct
OP_ codes and did not encode the same signature. We therefore assume these
transactions to be the result of users signing raw transactions multiple times,
e.g., for development purposes.

3 Measurement and analysis 12

Success rate: 21.36% as out of the 28, 595 confirmed attacks using Push operations
in scriptSig of non-standard size only 5, 670 were successful, i.e., 19.46% of
modified transactions were later confirmed.

Total profit of the successful attacks: 64, 564 bitcoins.

3.2 Analysis
Now assume transaction malleability has been used against Mt.Gox. From the recon-
struction in Section 2 we identify three major time periods:

• Period 1 (January 2013 — February 7, 2014): Measurement before the closure of
withdrawals from Mt.Gox.

Over a year of measurements until the closure of withdrawals, a total of 421 conflict
sets were identified (Figure 7)

Figure 7: Malleability attacks during period 1

For a total value of 1, 811.58 BTC involved in these attacks (Figure 8)

In combination with the above mentioned success rate, the estimate lost value would
be of 386 BTC.

• Period 2 (February 8 - February 9, 2014): Withdrawals are suspended but with-
out any known source of the nature of the attacks.

3 Measurement and analysis 13

Figure 8: Bitcoins in malleability attacks during period 1

During period 2, a total of 1, 062 conflict sets were identified, totalling 5, 470 BTC.
A noticeable increase of attacks at 17 : 00 UTC on February 9th, from 0.15 attacks
per hour to 132 attacks per hour (Figure 9). No exact information about the time
the second press release has been published, but one might deduce from the increase
in attacks at 17:00 UTC that it should have happened between 14:00 and 17:00 UTC
alias 0:00 and 2:00 JST. The sudden increase suggests that immediately after the press
release other attackers started imitating the attack in order to exploit the “alleged”
weakness.

• Period 3 (February 10 — February 28): Withdrawals are still suspended after
revealing that the sole source of the attacks was transaction malleability.

One notices a sudden spike in activity after the second press release. Between February
10 and 11, a total of 25, 752 individual attacks were identified, totalling 286, 076 BTC,
two orders of magnitude larger than all attacks from period 1 combined (Figure 9). A
second, smaller wave of attacks starts after February 15, with a total of 9, 193 BTC.
The attacks have since calmed, returning to levels comparable to those observed in
period 1, before the press releases (Figure 9).

As seen in the end of Section 2, by the nature of how malleability attacks work, and
assuming Mt.Gox had disabled withdrawals like they stated in the first press release,
period 2 and 3 (with a total loss estimated at 64, 269.76 BTC) could not contribute

3 Measurement and analysis 14

Figure 9: Bitcoins and number of malleability attacks from in period 2 and 3

to the losses declared by Mt.Gox since they happened after withdrawals have been
stopped. Therefore, these attacks cannot have been aimed at Mt.Gox.

3.3 Discussion and conclusion
The analysis given above is based on first-hand data that were collected starting Jan-
uary 2013, for over a year preceding the bankruptcy filing by Mt.Gox. Thus one can
only estimate the number of attacks preceding the measurements, just by reading the
Blockchain. Since over 98% out of all attacks use the OP_PUSH code modification,
it suffices to inspect all confirmed transactions for scriptSig that do not use minimal
push opcodes. A total of 48 transactions were found, involving a total of 33.92 BTC.
Assuming that the success rate of 21.34% did not change significantly, a total of less
than 160 BTC seems to be involved involved in a few hundreds of attempted mal-
leability attacks in the period 2009 – 2012. This is equivalent to less than 10% of the
attacks identified during the measurements.

Different type of attacks might have played a role in Mt.Gox ’s loss, but malleability
attacks could have merely contributed in the declared losses. Indeed merely a total of
302, 700 BTC was involved, from which only 1, 811 BTC were in attacks before Mt.Gox
stopped the withdrawels.
To conclude, transaction malleability is a serious issue and should be considered

when implementing Bitcoin clients. Different type of attacks might have played a
role in Mt.Gox ’s loss, but malleability attacks could have merely contributed in the
declared losses. “However, while Mt.Gox claimed to have lost 850, 000 BTC due to
malleability attacks, merely a total of 302, 700 BTC was involved in malleability at-
tacks, of which only 1, 811 BTC were in attacks before Mt.Gox stopped users from
withdrawing bitcoins. Even more, 78.64% of these attacks were ineffective, and thus

References 15

barely 387 BTC could have been stolen using malleability attacks, from Mt.Gox or
even from other businesses.”([1]). Different type of attacks might have played a role in
Mt.Gox ’s loss, but malleability attacks could have merely contributed in the declared
losses.

References
[1] C. Decker, R. Wattenhofer. Bitcoin transaction malleability and MtGox, ES-

ORICS 2014, pp. 313–326, Lecture Notes in Computer Science, 8713, 2014.

[2] P. Wuille. BIP 0062: Dealing with Malleability,
https://github.com/bitcoin/bips/wiki/Comments:BIP-0062 (Online; accessed
March 10, 2014)

[3] P. Wuille. BIP 0066: Strict DER signatures,
https://github.com/bitcoin/bips/wiki/Comments:BIP-0066 (Online; created
January 10, 2015)

[4] E. Lombrozo, J. Lau, P. Wuille. Segregated Witness (Consensus layer),
https://github.com/bitcoin/bips/wiki/Comments:BIP-0141 (Online; created
January 21, 2015)

[5] A.M. Antonopoulos. Mastering Bitcoin. Programming the Open Blockchain, Sec-
ond edition, O’Reilly, 2017.

[6] D. Laptev. Bitcoin: transactions, malleability, SegWit and scaling, Light-
ningTo.Me 24-08-2017

[7] E. Klitzke. Bitcoin Transaction Malleability, https://eklitzke.org/, 20-07-2017

[8] List of OP codes in Script Bitcoin Wiki, https://en.bitcoin.it/wiki/Script

[9] siminchen. Bitcoin Script IDE, https://github.com/siminchen/bitcoinIDE

[10] Wiki Bitcoin, https://en.bitcoin.it/wiki/Transaction

[11] MtGox. Mtgox press release announcing the stop of withdrawals,
https://www.mtgox.com/press_release_20140210.html, 2014.

[12] MtGox. Mtgox press release about transaction malleability,
https://www.mtgox.com/press_release_20140210.html, 2014.

[13] MtGox. Announcement regarding the applicability of us bankruptcy code chapter
15, https://www.mtgox.com/img/pdf/20140314-announcement_chapter15.pdf,
2014.

[14] T. Bamert, C. Decker, L. Elsen, S. Welten, R. Wattenhofer. Have a snack, pay
with bitcoin InIEEE Interna-tion Conference on Peer-to-Peer Computing (P2P),
Trento, Italy, 2013.

	Transaction malleability
	The MtGox Incident Timeline
	Measurement and analysis
	Measurement
	Analysis
	Discussion and conclusion

